Controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with delay and Poisson jumps
نویسندگان
چکیده
Abstract: The current paper is concerned with the controllability of nonlocal secondorder impulsive neutral stochastic functional integro-differential equations with infinite delay and Poisson jumps in Hilbert spaces. Using the theory of a strongly continuous cosine family of bounded linear operators, stochastic analysis theory and with the help of the Banach fixed point theorem, we derive a new set of sufficient conditions for the controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with infinite delay and Poisson jumps. Finally, an application to the stochastic nonlinear wave equation with infinite delay and Poisson jumps is given.
منابع مشابه
Controllability for a Class of Nonlocal Impulsive Neutral Fractional Functional Differential Equations
In this article, we have dealt with the controllability for impulsive (Imp.) neutral fractional functional integro-differential equations with state dependent delay (S-D Delay) subject to non-local conditions. We have obtained the appropriate conditions for Controllability result by using the classical fixed point technique and analytic operator theory under the more general conditions. At last...
متن کاملControllability result of impulsive stochastic fractional functional differential equation with infinite delay
This paper is concerned with the controllability result of mild solution for an impulsive neutral fractional order stochastic integro-differential equation with infinite delay subject to nonlocal conditions. The existence result is obtained by using the fixed point technique on a Hilbert space. At last, we present an example to verify the result. MSC: 93B05 • 26A33 • 34K05 • 34A37 • 34K50
متن کاملApproximate controllability of fractional impulsive neutral stochastic differential equations with nonlocal conditions
In this paper, the approximate controllability of fractional impulsive neutral stochastic differential equations with nonlocal conditions and infinite delay in Hilbert spaces is studied. By using the Krasnoselskii-Schaefer-type fixed point theorem and stochastic analysis theory, some sufficient conditions are given for the approximate controllability of the system. At the end, an example is giv...
متن کاملMean Square Stability of Impulsive Stochastic Delay Differential Equations with Markovian Switching and Poisson Jumps
In the paper, based on stochastic analysis theory and Lyapunov functional method, we discuss the mean square stability of impulsive stochastic delay differential equations with markovian switching and poisson jumps, and the sufficient conditions of mean square stability have been obtained. One example illustrates the main results. Furthermore, some well-known results are improved and generalize...
متن کاملControllability of Damped Second-Order Neutral Impulsive Stochastic Functional Differential Systems with Infinite Delay
In this paper we study the controllability of damped second order neutral impulsive stochastic functional differential system with infinite delay in Hilbert spaces. Sufficient conditions for controllability results are obtained by using the theory of cosine families of bounded linear operators and fixed point technique. An example is provided to illustrate the theory.
متن کامل